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Conformational Control of [26]Hexaphyrins(1.1.1.1.1.1) by meso-Thienyl

Substituents

Masaaki Suzuki and Atsuhiro Osuka*!®!

Abstract: Conformational preference
and chemical stability of meso-aryl-sub-
stituted [26]hexaphyrins(1.1.1.1.1.1)
([26]ArH) depend upon meso-aryl sub-
stituents. Although only a planar and
rectangular conformation (type-II con-
formation) has been identified for
[26]ArH so far, we have demonstrated
here that a different conformation with

elucidation

Introduction

Recently, increasing attention has been focused on expand-
ed porphyrins, which have a conjugated pyrrolic macrocycle
larger than porphyrins themselves, in light of their unique
chemical, optical, and electrochemical properties, as well as
their rich coordination chemistry."! Among these, hexaphy-
rins(1.1.1.1.1.1) possess a unique position in view of their
structural and functional diversities that are more or less
analogous to those of porphyrins. In 1993, Gossauer et al.
reported the synthesis of unstable -alkyl substituted hexa-
phyrin(1.1.1.1.1.1) 1 as the first example. On the basis of its
'"H NMR data, 1 was concluded to be aromatic with a type-I
conformation, in which all the pyrrolic rings took inward
orientation.”) In 1997, Dolphin et al. reported meso-hexa-
phenyl-substituted hexaphyrin(1.1.1.1.1.1) 2, which was par-
ticularly unstable and precluded its full characterization.”!
In 1999, Cavaleiro et al. reported meso-hexakis(pentafluoro-
phenyl)-substituted hexaphyrin(1.1.1.1.1.1) 3 in about 1%
yield, which was shown to be a stable aromatic macrocycle
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all the pyrroles pointing inward (type-I
conformation) is preferred for [26]ArH
(7 and 11-1) bearing small 2-thienyl or
3-thineyl substituents at 15- and 30-po-
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sitions. Both type-I and type-II
[26]ArH exhibit diatropic ring currents,
reflecting aromatic character. Type-I
[26]ArH, such as 7 and 11-1, have been
shown to serve as an effective ligand
for Pd" ions to provide bis-Pd" com-
plexes 12 and 13 with N;C, coordina-
tion through facile C—H bond activa-
tion.

palla-

structure

with a conjugated 26 m-network that was interconvertible to
its reduced 28m-congener.! In the meanwhile, we have syn-
thesized meso-aryl substituted [26]hexaphyrins(1.1.1.1.1.1)
([26]ArH) in better yields,”®! and explored their unique reac-
tivities,”! diverse metalation behaviors® and extremely
large two-photon absorption cross sections.”) The strong aro-
matic character of 3 relies on the almost planar and rectan-
gular conformation with two inverted pyrroles (type-II con-
formation), which is the a sole stable conformation so far
identified for [26]ArH. In this paper, we report that intro-
duction of small aryl substituents at both 15- and 30-posi-
tions leads to stable type-I [26]ArH, which can serve as an
effective binuclear ligand to provide bis-Pd"-complexes
through double C—H bond activation.

Results and Discussion
First, hexaphyrins 4 and 6 bearing two or three meso-phenyl

substituents were prepared from tripyrrane or dipyrrome-
thane precursor according to our synthetic protocol.”®*
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bly unstable in solution under
aerobic conditions and changed
to intractable material within
several hours, in contrast to
chemical stability of 4. These
results suggested that 1) an
electron- deficient pentafluoro-
phenyl group favors meso-posi-
tions on the long side of rectan-
gle and 2) [26]ArH becomes
unstable when a sterically un-
congested phenyl group occu-
pies the meso-positions of the
long side.

Next, hexaphyrins 7 and 9
bearing two or three meso-2-
thienyl substituents were pre-
pared in 35% and 7% yields
from  appropriate  precur-
sors.”*%! Hexaphyrin 7 displays
a less intense Soret-like absorp-
tion band at 616 nm in its ab-
sorption spectrum compared

Type-II conformation of 4 has been indicated from its
"H NMR spectral data and confirmed by X-ray crystallo-
graphic analysis (Figure 1). Just after the preparation, a

Figure 1. Crystal structure of 4. Top: top view. Bottom: side view. Penta-
fluorophenyl groups are omitted for clarity in the side view. Thermal el-
lipsoids are scaled to the 50 % probability level.

minor conformer (hexaphyrin 5) was detected in the
"HNMR spectrum of a hexaphyrin fraction separated by
silica gel column chromatography, but was smoothly con-
verted to 4 upon standing. Hexaphyrin 6 has been also
shown to take the similar type-II conformation on the basis
of its '"H NMR and absorption spectrum, but was considera-
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with that of 3 (Figure?2) and
the signals due to the peripher-
al pyrrolic B-protons are found at 6=7.38, 7.72, and
8.16 ppm in the '"HNMR spectrum; these results are also
quite different from those found for 3. Type-I structure of 7
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Figure 2. UV/Vis absorption spectra of 7, 11, and 12 in CH,Cl,.

has been revealed by X-ray diffraction analysis, in which all
the pyrroles take inward orientation and the two tripyrrodi-
methene moieties are bridged by the 2-thienyl-substituted
methine carbon atoms (Figure 3). Overall, the macrocycle is
rather planar with a small mean plane deviation of 0.268 A
for the 36 core atoms. The 2-thienyl groups are positioned
above and below the macrocycle with relatively small dihe-
dral angles (ca. 8.6°) toward the connecting dipyrromethene
segment, hence avoiding steric congestion between the two
2-thienyl groups. The 2-thienyl protons are upfield shifted to
0=4.55, 492, and 5.35 ppm, indicating a diatropic ring cur-
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Figure 3. Crystal structure of 7. Top: top view. Bottom: side view. Ther-
mal ellipsoids are scaled to the 50 % probability level.

rent of the [26]hexaphyrin macrocycle that is estimated to
be slightly weaker than that of 3, as judged from the smaller
downfield shifts of the peripheral f-protons. The hexaphyrin
7 was quantitatively reduced with NaBH, to [28]hexaphyrin
8, which displayed a very broad "H NMR spectrum, proba-
bly reflecting considerable conformational flexibility. X-ray
crystallographic analysis has revealed a highly distorted
structure of 8 (Figure 4). Therefore, it may be concluded
that the incorporation of two 2-thienyl groups at 15- and 30-
positions also influences a stable conformation of [28]hexa-
phyrin. On the other hand, hexaphyrin 9 is considerably un-
stable probably due to its type-1I conformation with small 2-
thienyl groups at the long side meso-position.

To examine more subtle steric effects, we prepared 10 and
11 bearing 3-methyl-2-thienyl and 3-thienyl meso-substitu-
ents, respectively. The type-II conformation of 10 was indi-
cated by its "H NMR and absorption spectra, and has been
confirmed by X-ray diffraction analysis (Figure 5).1 On the
other hand, hexaphyrin 11 exhibited a unique feature; intact
11 as prepared took a type- II conformation (11-II), but was
changed to a type-I conformation (11-I) upon heating at
50°C in CHCl;, and an equilibrated mixture (11-I/11-II=
7:1) was formed after 3 h (Scheme 1). This fact allowed an
estimation of the energy difference (1.2 kcalmol™") between
the two conformers. Importantly the two conformers were
isolated in a pure form at room temperature and structurally
well characterized (Figures 6 and 7). In line with these struc-
tural assignments, the two isomers display absorption spec-
tra that are characteristic of type-I and type-II conforma-
tions, respectively (Figure 2). From the examination of the
temperature dependence of the transformation from 11-1II to
11-1 by 'H NMR measurements, the activation barrier has
been determined to be 8.7 kcalmol ™. Effective intramolecu-
lar hydrogen-bonding interactions favor 11-I, but steric con-
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Figure 4. Crystal structure of 8. Top: top view. Bottom: side view. Ther-
mal ellipsoids are scaled to the 50 % probability level.

Figure 5. Crystal structure of 10. Top: top view. Bottom: side view. Penta-
fluorophenyl groups are omitted for clarity in the side view. Thermal el-
lipsoids are scaled to the 50 % probability level.

gestion between the meso-aryl substituents at the 5- and 20-
positions disfavors 11-I with respect to 11-1I. It is thus con-
ceivable that bulky substituents at the inward meso-positions
in type-I conformation cause substantial steric repulsion,
forcing conformational change to a type-11 [26]ArH.

Chem. Eur. J. 2007, 13, 196 -202
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Scheme 1. Interconversion between 11-1 and 11-11.

Figure 6. Crystal structure of 11-I. Top: top view. Bottom: side view.
Thermal ellipsoids are scaled to the 50 % probability level.

s

Figure 7. Crystal structure of 11-II. Top: top view. Bottom: side view.
Thermal ellipsoids are scaled to the 50 % probability level.
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CeFs Type-I hexaphyrin 7 can form
a new bis-metalation products
of [26]JArH (Scheme 2). Treat-
ment of 7 with Pd(OAc), in a
mixture of methanol and
CH,Cl, caused smooth metala-
tion within 20 min at room tem-
perature to provide the bis-Pd"
complex 12 in 53% yield. The
"H NMR spectrum of 12 exhib-
ited considerably upfield shifted
signals due to the 4- and 5-pro-
tons of the 2-thienyl group at 6=2.69 and 3.78 ppm, respec-
tively, in addition to six doublets due to the peripheral (-
protons in a range of d=8.26-9.76 ppm, hence indicating
that the 3-positions of the thienyl groups were metalated
through C—H bond cleavage. Eventually the structure has
been unambiguously confirmed by X-ray diffraction analysis
as shown in Figure 8, which reveals a C,-symmetric novel

Figure 8. Crystal structure of 12. Top: top view. Bottom: side view. Ther-
mal ellipsoids are scaled to the 50% probability level.

coordination structure with a type-I conformation. Each Pd"
ion is bound with the three pyrrolic nitrogen atoms and the
carbon atom of the thienyl group in a nearly square-planar
fashion. The mean plane deviation of the 36 core atoms of
the macrocycle is only 0.214 A with a displacement of Pd"
ion by 0.491 A above the mean plane. The coordination
mode of 12 is reminiscent of those of N-confused porphy-
rins!"! and other carbaporphyrins.'”l It is interesting to note
that the Pd—C (1.97 A) and averaged Pd—N (2.02 A) distan-
ces of 12 are similar to those of N-confused porphyrin Pd
complexes."*"!! Type-I hexaphyrin 11-I also underwent simi-
lar Pd" metalation, which proceeded even at —20°C to pro-
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Scheme 2. Bis-palladation of 7 to 12 and 11-I to 13.

vide 13 in 63 % yield, since the C—H bond cleavage occurred
at the intrinsically active a-position of the thienyl group.!
The structure of 13 has been revealed by X-ray analysis
(Figure 9). Interestingly, both complexes 12 and 13 exhibit
considerably broadened absorption spectra with a broad
band at low energy (1244 and 1191 nm for 12 and 13, respec-
tively, Figure 2).

Figure 9. Crystal structure of 13. Top: top view. Bottom: side view. Ther-
mal ellipsoids are scaled to the 50 % probability level.

Conclusion

In summary, there are at least two stable conformations for
[26]ArH, type-I and type-II confirmations, which are deli-
cately balanced by the steric factors of meso-aryl substitu-
ents. Hexaphyrins 7 and 11-I are, to the best of our knowl-
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edge, the first type-I [26]ArH
compounds, and it is only per-
mitted for those bearing small
aryl groups both at 15- and 30-
positions, whereas type-II con-
formations are predominant for
other [26]ArH compounds. The
type-I compounds 7 and 11
have been demonstrated to
serve as an effective ligand for
Pd" ions to provide complexes
12 and 13 through the facile C—
H bond activation. Study on the
metalation of other ions into
these type-I [26]ArH com-
pounds is worthy of further in-
vestigation.

Experimental Section

General: All reagents and solvents were of commercial reagent grade
and were used without further purification except where noted. 'H NMR
spectra were recorded on a JEOL ECA-600 spectrometer, (operating as
600.17 MHz for 'H and 564.73 MHz for °F) using the residual solvent in
CDCIl; and CD,Cl, as the internal reference for 'H (§=7.26 and
5.30 ppm, respectively) and hexafluorobenzene as external reference for
YF (0=-162.9 ppm). Spectroscopic grade CH,Cl, was used as solvents
for all spectroscopic studies. UV/Visible absorption was recorded on a
Shimadzu UV-3100 spectrometer. Mass spectra were recorded on a
BRUKER microTOF by using positive mode ESI-TOF method in aceto-
nitrile. Preparative separations were performed by silica gel gravity
column chromatography (Wako gel C-400). CCDC-607198 (4), CCDC-
606795 (7), CCDC-606796 (8), CCDC-606797 (10), CCDC-606798 (11-
II), CCDC-606799 (11-1I), CCDC-606801 (12), CCDC-607199 (13) con-
tain the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[26]Hexaphyrins: Methanesulfonic acid (2.5m diluted with CH,Cl,,
12.5 ul) was added to a solution of aldehyde (0.50 mmol) and 5,10-bis-
(pentafluorophenyl) tripyrrane (278 mg, 0.5 mmol) in CH,Cl, (22.2 mL)
at 0°C under nitrogen atmosphere. The reaction mixture was stirred for
2h and then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ; 500 mg)
was added. After further stirring for 1 h at room temperature, the result-
ing solution was passed through a short basic-alumina column with
MeOH/CH,Cl, (1:9) and solvent was removed by a rotary evaporator.
The residual mixture was purified by silica gel column chromatography.
Appropriate fractions were collected, then evaporated to dryness. Re-
crystallization from CH,Cl,/MeOH afforded the target [26]hexaphyrin.

[28]Hexaphyrins: MeOH was added to a solution of [26]hexaphyrin
(0.0020 mmol) and excess NaBH, (1.0 mmol) in CH,Cl, (20 mL). The re-
sulting mixture was stirred for 1 h and quenched with water. The organic
phase was successively washed with water and brine, then dried over
Na,SO,. Removal of solvent gave [28]hexaphyrin in an almost quantita-
tive yield.

Pd complexes: MeOH (3 mL) was added to a solution of [26]hexaphyrin
(7 or 11-1, 30.0 mg, 23.2 mmol) and Pd(OAc), in CH,Cl, (9 mL), and the
resulting solution was stirred for 20 min at room temperature under a ni-
trogen atmosphere. Reaction mixture was passed through a short alumina
column with CH,Cl,. After removal of solvent, the residual mixture was
separated by silica gel column chromatography with CH,Cl,/hexane (3:7)
as an eluent. The appropriate fraction was collected and evaporated, fol-
lowed by recrystallization from CH,Cl,/MeOH, giving Pd complex.
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5,20-Bis(phenyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26 Jhexaphyrin
(4): The eluent used for silica gel column chromatography was CH,Cl,/
hexane (3:7). Purple solution, greenish solid, yield 7.2%; 'HNMR
(CDCL,): 0=-2.63 (s, 4H; inner $-H), —2.19 (br, 2H; NH), 7.92 (m, 6H;
phenyl), 839 (m, 4H; phenyl), 921 (d, J=4.4Hz, 4H; outer (-H),
9.39 ppm (d, J=4.8 Hz, 4H; outer p-H); "FNMR (CDCl;): 6 =—163.25
(m, 8F; meta-F), —153.40 (m, 4F; para-F), —136.93 ppm (d, /=26.3 Hz,
8F; ortho-F); UV/Vis (CH,CL): Ay, (¢)=1020 (7900), 892 (6900), 784
(12000), 725 (20000), 573 nm (210000m 'cm™'); HR-ESI-TOF-Mass
(positive-mode): m/z caled for CeH,sFo0Ng ([M+H]™): 1281.1816, found:
1281.1908 (100%); crystal data: CgH,uF,0Ng2 C,HgO,, M, =1426, mono-
clinic, space group P2;/n (No. 14), a=14.518(4), b=11.348(3), c=
19.583(5) A, f=97.49(1)°, V=3199(2) A®, Z=2, peyea=1.513 gem™>, T=
—150°C, R;=0.070 [I>20(I)], Ry=0.205 (all data), GOF=1.053. Crys-
tals were grown from AcOEt/n-hexane at —20°C.
5,20-Bis(2-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26 ]hexaphyrin
(7): The eluent used for silica gel column chromatography was CH,Cl,/
hexane (3:7). Greenish blue solution, reddish solid, yield 35%; '"H NMR
(CDCLy): 6=4.55 (d, J=4.0Hz, 2H; thienyl), 492 (t, J=4.4Hz, 2H;
thienyl), 5.35 (d, J=4.8 Hz, 2H; thienyl), 7.38 (s, 4H; f-H), 7.72 (s, 4H;
outer B-H), 8.16 ppm (d, /J=3.8 Hz, 4H; B-H); “FNMR (CDCl,): 0=
—160.81 (br 4F; meta-F), —160.61 (br, 4F; meta-F), —151.53 (t, J=
17.6 Hz, 4F; para-F), —137.47 (d, J=26.3 Hz, 4F; ortho-F), —136.97 ppm
(d, J=35.0Hz, 4F; ortho-F); UV/Vis (CH,CL): A,., (¢)=1044 (5500),
892 (7700), 616 (75000), 349 nm (57000m 'cm™'); HR-ESI-TOF-Mass
(positive-mode): m/z caled for CguH,FNgS, ([M+H]*'): 1293.0944;
found: 1293.0946 (100 % ); crystal data: Cs,H,F,0NgS,, M, =1293, mono-
clinic, space group P2,/n (No. 14), a=13.916(6), b=9.286(4), c=
19.81(1) A, f=103.89(2)°, V=2484(2) A°, Z=2, peyea=1.728 gecm >, T=
—150°C, R,=0.070 [I>30(])], Ry=0.192 (all data), GOF=0.999. Crys-
tals were grown from CHCl;/MeOH.
5,20-Bis(2-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[ 28 ]hexaphyrin
(8): UV/Vis (CH,CL): Ay (€)=885 (6800), 783 (10000), 621 (150000),
449 (28000), 405 (42000), 319 nm (28000m 'cm™'); HR-ESI-TOF-Mass
(positive-mode): m/z caled for CuHpuFoNgS, ([M+H]T): 1295.1101;
found: 1295.1137 (100 %); crystal data: Cg,H,,F,0NS,-CH,Cl,, M, =1380,
monoclinic, space group P2,/n (No. 14), a=16.967(3), b=14.577(3), c=
26.291(5) A, f=106.816(6)°, V=6225(2) A, Z=4, pa=1472gcm™,
T=-150°C, R;=0.0 98 [I>20(])], Ry=0. 314 (all data), GOF=1.067.
Crystals were grown from CH,Cl,/MeOH.
5,15,25-Tris(thienyl)-10,20,30-tetrakis(pentafluorophenyl)[26 ]hexaphyrin
(9): The eluent used for silica gel column chromatography was CH,Cl,/
hexane (5:5). Blue solution, red solid, yield 6.6%; UV/Vis (CH,CL):
Amax = 1064, 837, 754, 590, 451, 421 nm; HR-ESI-TOF-Mass (positive-
mode): m/z caled for CgH,FsNgS; ([M+H]Y): 1209.0980; found:
1209.0904 (100 %).
5,20-Bis(3-methyl-2-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26]-
hexaphyrin (10): The eluent used for silica gel column chromatography
was CH,Cl,/hexane (3:7). Purple solution, greenish solid, yield 23%;
'"HNMR (CDCly): §=-2.54 (s, 4H; inner B-H), —2.13 (br, 2H; NH),
2.33 (s, 3H; methyl), .38 (s, 3H; methyl), 7.46 (t, J=5.5 Hz, 2H; thienyl),
791 (t, J=5.5Hz, 2H; thienyl), 9.27 (m, 4H; outer -H), 9.36 ppm (d,
J=4.6 Hz, 4H; outer p-H); F NMR (CDCL;): 6 = —163.21 (m, 8F; meta-
F), —153.31 (t, J=17.6 Hz, 4F; para-F), —137.09 (d, J=26.3 Hz, 4F;
ortho-F), —136.88 (s, 4F; ortho-F), —136.79 ppm (d, J=17.6 Hz, 4F,
ortho-F); UV/Vis (CH,ClL): An. (¢)=1028 (8900), 901 (5200), 787
(11000), 726 (24000), 576 nm (280000M'cm™'); HR-ESI-TOF-Mass
(positive-mode): m/z caled for CgH,sFyNS, ([M+H]T): 1321.1257;
found: 1321.1262 (100%); crystal data: CgH,,F,0NgS,2C,H;;0,, M,=
1497, monoclinic, space group P2,/n (No. 14), a=14.290(5), b=9.286(4),
c=19.81(1) A, B=103.89(2)°, V=2484(2) A3, Z=2, puea=1.555 gem,
T=-150°C, R,=0.061 [I>20(])], Ry=0.161 (all data), GOF=1.032.
Crystals were grown from AcOEt/hexane.
5,20-Bis(3-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26 Jhexaphyrin
(11-I): The eluent used for silica gel column chromatography was
CH,Cly/hexane (5:5). Dark purple solution, greenish solid, yield 26 %;
'"HNMR (600 MHz, CDCLy): §=-2.52 (s, 4H; inner B-H), —2.35 (br,
2H; NH), 7.93 (m, 2H; thienyl), 8.21 (m, 2H; thienyl), 8.27 (m, 2H;
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thienyl), 9.32 (d, J=4.6 Hz, 4H; outer (-H), 9.37 ppm (d, J=4.6 Hz, 4H;
outer B-H); FNMR (CDCl;): 6 =—163.24 (s, 8F; meta-F), —153.36 (m,
4F; para-F), —136.96 ppm (d, J=17.6 Hz, 8F; ortho-F); UV/Vis
(CH,CL): Ana (8)=1024 (7600), 901 (5300), 789 (11000), 728 (18000),
575 (220000), 336 nm (28000M~'cm™'); HR-ESI-TOF-Mass (positive-
mode): m/z caled for CuHyuFyNgS, ([M+H]Y): 1293.0944; found:
1293.0935 (100 % ); crystal data: Cg,H,0F,0NS,CH,Cl,, M,=1426, mono-
clinic, space group P2/n (No. 14), a=10.596(5), b=17.523(9), c=
15.677(7) A, B=98.99(2)°, V=2875(2) A®, Z=2, peyea=1.647 gem™, T=
—150°C, R,=0.101 [I/>20(I)], Ry=0.325 (all data), GOF=1.091. Crys-
tals were grown from CH,Cl,/MeOH at —20°C.
5,20-bis(3-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26 ]hexaphyrin
(11-I): The eluent used for silica gel column chromatography was
CH,Cl,. Dark blue solution, reddish solid, yield 88 %; 'H NMR (CDCl,):
0=4.55 (d, J=4.0 Hz, 2H; thienyl), 4.92 (t, J=4.4 Hz, 2H; thienyl), 5.35
(d, J=4.8 Hz, 2H; thienyl), 7.38 (s, 4H; p-H), 7.72 (s, 4H; outer -H),
8.16 ppm (d, J=3.8 Hz, 4H; B-H); "FNMR (CDCl;): 6=-160.81 (br,
4F; meta-F), —160.61 (br, 4F; meta-F), —151.53 (t, J=17.6 Hz, 4F; para-
F), —137.47 (d, J=26.3 Hz, 4F; ortho-F), —136.97 ppm (d, J=35.0 Hz,
4F; ortho-F); UV/Vis (CH,CL): An., (¢)=1015 (4500), 795 (8400), 733
(8900), 577 (95000), 432 (3100), 338 nm (4600M 'cm™') nm; HR-ESI-
TOF-Mass (positive-mode): m/z caled for CgH, FyNgS, ([M+H]"):
1293.0944; found: 1293.0924 (100%); crystal data: CgH,FaygNeS,, M=
1293, monoclinic, space group P2;/n (No. 14), a=13.965(5), b=9.356(4),
c=19.626(6) A, $=103.92(1)°, V=2488(1) A’, Z=2, peyea=1.725 gcm ™,
T=-150°C, R,=0.061 [I>20(I)], Ry=0.188 (all data), GOF=1.174.
Crystals were grown from CHCl;/MeOH.
5,20-Bis(2-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26 Jhexaphyrin
bis-Pd" complex (12): Black solution, black solid, yield 53% (Pd(OAc),:
20.8 mg, 4 equiv); 'H NMR (CDCl;): 6=2.68 (d, J=4.8 Hz, 2H; thienyl),
3.78 (d, J=4.8 Hz, 2H; thienyl), 8.26 (d, /=4.8 Hz, 2H; $-H), 8.44 (d,
J=4.1Hz, 2H; B-H), 8.56 (d, J=4.4 Hz, 2H; B-H), 9.05 (d, /=4.4 Hz,
2H; B-H), 9.76 ppm (d, J=4.4 Hz, 4H; B-H); "FNMR (CDClL): 6=
—161.03 (m, 2F; meta-F), —160.78 (m, 6F; meta-F), —150.64 (m, 8F;
para-F), —137.02 (d, J=26.3 Hz, 2F; ortho-F) —136.57 (m, 4F; ortho-F),
—136.01 ppm (d, /=26.3 Hz, 2F; ortho-F); UV/Vis (CH,Cl,): A, (€)=
1244 (7500), 911 (6500), 834 (7900), 736 (sh, 23000), 641 (35000), 552
(41000), 429 (38000), 367 nm (33000m 'cm™"); HR-ESI-TOF-Mass (pos-
itive-mode): m/z caled for CgH,cFyNS,Pd, ([M]*): 1501.8649; found:
1501.8662 (100 % ); crystal data: Cg,H;F,NS,Pd,-6 CHCl;, M, =2218, tri-
clinic, space group P1 (No. 2), a=9.474(1), b=13.815(2), c=15.395(2) A,
a=89.823(3), f=88.467(2), y =88.467(2)°, V=1901.6(5) A>, Z=1, poea=
1.937 gem ™, T=-183°C, R,=0.037 [I>20(I)], Ry=0.093 (all data),
GOF =1.063. Crystals were grown from CHCl,.
5,20-Bis(3-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[26 Jhexaphyrin
bis-Pd" complex (13): Black solution, black solid, yield 62% (Pd(OAc),:
10.4 mg, 2 equiv); 'H NMR (CDCly): 6=0.66 (d, J=5.0 Hz, 2H; thienyl),
3.42 (d, J=5.0 Hz, 2H; thienyl), 8.20 (d, /J=4.6 Hz, 2H; $-H), 8.49 (d,
J=4.1Hz, 2H; p-H), 8.60 (d, /J=4.6 Hz, 2H; p-H), 9.05 (d, /=4.6 Hz,
2H; B-H), 9.74 ppm (d, J=4.6 Hz, 4H; B-H); "FNMR (CDCl,): 6=
—161.00 (br, 2F; meta-F), —160.66 (br, 6F; meta-F), —150.47 (t, J=
26.3 Hz, 8F; para-F), —137.19 (d, J=26.3 Hz, 2F; ortho-F) —136.58 (d,
J=17.6Hz, 2F; ortho-F), —136.33 (d, J=263Hz, 2F; ortho-F),
—136.08 ppm (d, J=26.3 Hz, 2F; ortho-F); UV/Vis (CH,CL): A, (€)=
1191 (7900), 898 (8000), 834 (7900), 630 (38000), 543 (39000), 470
(29000), 418 (34000), 390 nm (34000m 'cm'); HR-ESI-TOF-Mass (pos-
itive-mode): m/z caled for CguH,JF0NeS,Pd, ([M+H]%): 1502.8727,
found: 1502.8713 (100%); crystal data:
CgH6F5NgS,Pd,-4 CHCI;-CCl,-8 O, M,=2216, triclinic, space group P1
(No. 2), a=9.309(4), b=13.748(5), ¢=15.643(8) A, a=89.45(2), f=
85.55(2), y=73.05(1)°, V=1909.0(1) A>, Z=1, peq=1.937 gem>, T=
—150°C, R,=0.078 [I>20(I)], Ry=0.219 (all data), GOF=1.051. Crys-
tals were grown from CHCI,.
5,20-Bis(3-methyl-2-thienyl)-10,15,25,30-tetrakis(pentafluorophenyl)[28]-
hexaphyrin (14): 'HNMR (CDCl,): 6=2.01 (s, 6H; methyl), 2.36 (br,
4H; innerp-H), 4.02 (s, 2H; outer NH), 6.96 (d, /=5.0 Hz, 2H; thienyl),
7.37 (d, J=5.0 Hz, 2H; thienyl), 7.66 (d, J=4.1 Hz, 2H; outer p-H), 7.73
(d, J=4.1Hz, 2H; outer B-H), 7.80 (d, J=4.6 Hz, 2H; outer p-H),

www.chemeurj.org — 201


www.chemeurj.org

CHEMISTRY—

A. Osuka and M. Suzuki

A EUROPEAN JOURNAL

7.94ppm (s, 2H; outer -H); "FNMR (CDCLy): 6=-161.54 (t, J=
17.5 Hz, 4F; meta-F), —160.67 (s, 4F; meta-F), —153.27 (t, J=17.7 Hz,
2F; meta-F), —151.81 (t, J=17.6 Hz, 2F; para-F), —137.67 (d, J=17.6 Hz,
4F; ortho-F), —13713ppm (d, J=263Hz, 4F; ortho-F); UV/Vis
(CH,CL,): Anax (£)=881 (4300), 775 (8200), 609 (120000), 444 (17000),
404 (22000), 314nm (16000m'cm™"); HR-ESI-TOF-Mass (positive-
mode): m/z caled for CgHyF,NgS, ([M+H]*'): 1323.1414; found:
1323.1437 (100 %).
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